تابعی‌های تبادلی-همبستگی Exchange-Correlation Potential + MEAN FIELD APPROX.-POISSON SOLVER

تابعی‌های تبادلی همبستگی Exchange-Correlation Potential + MEAN FIELD APPROX.-POISSON SOLVER – تقریب میدان میانگین

بهتر است کمی درباره‌ی جملاتی که در هامیلتونی بس‌الکترونی ظاهر شدند صحبت کنیم:

معادله بس ذره ای

۱)جملات تک الکترونی = انرژی جنبشی تک الکترون‌ها ( \(T\)) + انرژی پتانسیل خارجی( \(E_{EXT}\)):
این جملات چیزی شبیه پهنای یک نوار مثلا پهنای نوار ۴s (یا با کاراکتر ۴S) هستند.
۲)انرژی هارتری – پتانسیل هارتری:
از کتاب الکترودینامیک جکسون می‌توان به یک دید شهودی و عددی برای محاسبه بخش همبسته و بسیار پیچیده‌ی برهمکنش کولنی الکترونها رسید. کافیست از حرف‌های جلسات پیش بیاد بیاورید که میخواستیم مساله را تک ذره‌ای و غیربرهمکنشی حل کنیم. جوری که الکترونها یکدیگر را نبینند. اینکار با معادله پواسون شدنی است:

\(\nabla^2 V_H(\mathbf{r})=-4\pi n(\mathbf{r}) , \)

پاسخ معادله بالا به شکل زیر است:

\(V_H(\mathbf{r})=\int d\mathbf{r^{\prime}} \frac{n(\mathbf{r^{\prime}})}{\vert \mathbf{r-r^{\prime}}\vert} ,\)

یا عبارتی مشابه برای انرژی:

\(E_H(\mathbf{r})=\int d\mathbf{r} d\mathbf{r^{\prime}} \frac{n(\mathbf{r}) n(\mathbf{r^{\prime}})}{\vert \mathbf{r-r^{\prime}}\vert} ,\)

هر \(d\mathbf{r^{\prime}}\) را یک جعبه بسیار کوچک در نظر بگیرید که دارای بار \(dQ=-n(\mathbf{r^{\prime}})d\mathbf{r^{\prime}}\) است و می‌تواند در نقطه‌ی \(\mathbf{r}\) یک پتانسیل به اندازه‌ی \(\frac{dQ}{\vert \mathbf{r-r^{\prime}}\vert}\) ایجاد کند. با توجه به اینکه متغیر \(\mathbf{r^{\prime}}\) کل فضا را می‌روبد، پس اثر تمامی بارهای درون کل فضای بلور در نقطه \(\mathbf{r}\) به حساب می‌آید. پس عملا هر الکترون، یک پتانسیل میانگین، ناشی همه ابرهای الکترونی را حس می‌کند. به این تقریب MEAN-FIELD-APPROX. گفته می‌شود. فقط این نکته را در نظر بگیرید که تقریب الکترون مستقل است و مکان قرارگیری یک جعبه روی مکان دیگری تاثیر ندارد. پس اگر در فرمالیسم DFT یک چگالی الکترونی اولیه حدس بزنید (مثلا ATOMIC) باید آنرا درون معادله‌ی پواسون قرار دهید و پاسخ را که پتانسیل هارتری است بیابید.
دوباره باید پتانسیل هارتری را درون معادله شرودینگر قرار دهید و توابع موج جدیدی بدست آورید. این توابع موج جدید، یک چگالی الکترونی جدید به شما می‌دهند که باید دوباره در معادله پواسون قرار گیرد و پتانسیل جدیدی تولید کند. پس عملا این یک سیکل همیشگی است که به آن میدان خودسازگار می‌گویند. برای قطع این سیکل خودسازگار یک شرط خودسازگار روی آن قرار می‌دهند که در بیشتر کدهای محاسباتی به آستانه مشهور است (برای مثال در QE – etot_conv_thr) یا انواع مختلف دیگر آستانه‌ها.
این ساده‌سازی‌ها باید بهایی داشته باشد. همبستگی بین این الکترون‌ها را چطور باید بازیابی کرد؟
نکته پیچیده‌ی دیگر اینست که رقابت بین بخش کولنی و جنبشی باعث می‌شود که یک الکترون سیار (Itinerant) باشد و دیگری جایگزیده(LOCALIZED) باشد. یعنی این محاسبات باید برای یک نوار صورت گیرد.
به هرحال تصاویری مختلفی در ذهن دانشمندان ایجاد شده است: تصویر الکترونی تقریبا آزاد – تصویر یونی و تصویری مخلوط که بین این دو قرار دارد. مثل سامانه‌های همبسته‌ی قوی.
۳)برهمنکش تبادلی: جملات هارتری کاملاً کلاسیکی بود و اجتماعی از بارها را به شکل چگالی الکترونی در نظر می‌گرفت. اما توابع موجی که در تولید این چگالی بار استفاده می‌شد، می‌بایست دارای یک ویژگی فرمیونی باشند. یعنی تابع موجشان باید از اصل طرد پائولی پیروی کند. اما مشکل اصلی آن در غیر موضعی بودن آن است. یعنی انتگرالده وابسته به دو متغیر فضایی است.
اما معنای برهمکنش تبادلی چیست؟ آیا دو الکترون با اعداد مغناطیسی یا اسپین یکسان می‌توانند یک مکان را اشغال کنند؟
پس در جاهایی که اسپین الکترونها یکی است و توابع موج همپوشانی دارند را باید از پتانسیل هارتری که پیش از این به صورت ناخواسته این برهمکنش ها را وارد کرده، کم کنیم. پس با این کار الکترونهایی با اسپین یکسان همبسته می‌شوند. منطقی است که شکل برهمکنش تبادلی به صورت حاصلضرب دوتابع موج باشد-یعنی همپوشانی را نشان دهد.

همپوشانی تابع موج الکترونی

پس این نوع الکترون‌ها چون نمی‌توانند کنار هم قرار گیرند، یکدیگر را دور می‌کنند- پس همبسته می‌شوند. به همین دلیل به آن اصل طرد پائولی یا دافعه‌ی پائولی می‌گویند. پس عملاً یک همبستگی مکانیک کوانتومی روی می‌دهد.
نکته دیگر اینست که عملا این یک برهمکنش نیست و ما برای جبران مشکلات ساده سازی هارتری آن را وارد کرده‌ایم و این ذاتی توابع موج است.
۴)پتانسیل همبستگی: الکترونی که در میدان موثر کولنی پواسون حرکت می‎‌کند، آنهم بی اعتنا به محیط اطرافش، هنوز توصیف درستی نیست. پتانسیل همبستگی می‌خواهد این نقیصه را نیز رفع کند. مثلا یک مورد قابل تصورش را فرض کنید. الکترونی که حرکت می‌کند به خاطر دافعه‌ی کولنی با الکترونهای دیگر آنها را از هم خودش دور می‌کند. آیا در پتانسیل هارتری (پتاانسیلی الکترواستاتیک) آن را به حساب آورده‌ایم؟؟؟ پس این الکترون یک حفره دور خودش ایجاد می‌کند و سعی می‌کند تا یک محدوده‌ی کوتاه (SHORT-RANGED) احتمال حضور دیگر الکترونها را به صفر برساند. اصطلاحاً به آن حفره تبادلی همبستگی می‌گویند. که این حفره‌ها می‌تواند منشاهای فوق‌العاده جذاب و پیچیده‌ای داشته باشد.
اگر پتانسیل تبادلی همبستگی را که مرتبه آن نسبت به دیگر جملات کوچکتر هم هست، بدانیم رفتار جمعی الکترونها دقیقاً قابل پیش‌بینی است. اما این کار خیلی شدنی نیست و خیلی‌ها اعتقاد دارند بسیاری از پدیده‌ها با کاراکتر تک ذره‌ای قابل توجیه نیستند.
————————————
ساده‌ترین تابعی تبادلی همبستگی در DFT، تقریب چگالی موضعی یا LDA است (CEPERLY, ALDER). در این تقریب چگالی انرژی تبادلی همبستگی در هر نقطه‌ای برابر با همتای گاز الکترونی یکنواخت (HEG) است. همین تقریب را میتوان به سامانه‌های اسپینی نیز اعمال کرد (LSDA یا LOACAL DENSITY APPROXIMATION).
انرژی تبادلی همبستگی در تقریب LSDA:

\(E^{LSDA}_{XC}[n_{\uparrow},n_{\downarrow}] = \int n (\mathbf{r}) \varepsilon_{XC}^{LDA} [n_{\uparrow}(\mathbf{r}), n_{\downarrow}(\mathbf{r})]d\mathbf{r},\)

انرژی تبادلی همبستگی به ازای هر الکترون در یک گاز یکنواخت با چگالی اسپینی \(n_{\uparrow}\) و \(n_{\downarrow}\) به شکل زیر بدست می‌آید:

\(\varepsilon_{XC}^{LDA} [n_{\uparrow}(\mathbf{r}), n_{\downarrow}(\mathbf{r})]=\frac{1}{2}\int n(\mathbf{r^{\prime}})(\bar{g}^{HEG}[\vert \mathbf{r} – \mathbf{r^{\prime}}\vert , n\uparrow (\mathbf{r}) , n\downarrow (\mathbf{r})]-1)d\mathbf{r^{\prime}}\)

برای اینکه بهتر بفمیم این عبارت به چه صورتی محاسبه میشود، گاز الکترونی یکنواخت را در نظر بگیرید. انرژی تبادلی این گاز به صورت تحلیلی قابل محاسبه است. اما بخش همبستگی آن با حل معادله بس ذره ای با روش‍‌های آشوبناک بدست می‌آید (\(E_X+E_C\) ). (مونت کارلوی کوانتومی)
اگر چگالی الکترونی در بلور کندتغییر باشد، یعنی نوسانات خیلی شدیدی نداشته باشد، میتوان در هر موضعی به صورت یک مستطیل چگالی‌ها الکترونی بلور را با چگالی الکترونی گاز یکنواخت جایگزین کرد. به این شکل نگاه کنید:

LDA یا تقریب چگالی موضعی

LDA یا تقریب چگالی موضعی

پس طبق این شکل نمیتوان از LDA در سامانه‌های مولکولی و کلاستری استفاده کرد. چون چگالی الکترونی این سامانه‌ها بسیار پرنوسان است.

LDA طول پیوندها را کمتر مقدار تجربی تخمین می‌زند.

تابعی بهتر GGA است که بهترین آن PBE (PERDEW,BURKE & ERNZERHOF) است. در این تقریب شیب چگالی نیز وارد می‌شود:

\(E^{LSDA}_{XC}[n_{\uparrow},n_{\downarrow}] = \int n (\mathbf{r})\varepsilon_{XC}^{LDA} [n_{\uparrow}(\mathbf{r}), n_{\downarrow}(\mathbf{r}),\nabla n_{\uparrow}(\mathbf{r}) , \nabla n_{\downarrow}(\mathbf{r})]d\mathbf{r},\)

علاوه بر تقریب GGA، در تقریب META-GGA، مشتق دوم چگالی نیز در نظر گرفته می‌شود.
پس در این جلسه مفاهیمی را یاد گرفتید که نیاز به تحقیق بیشتر و خواندن مقالات بسیار است. باز هم برای درک بهتر میتوانید به LETTER های اصلی ناشرین این تابعی‌ها مراجعه کنید و پارامترهایی که استفاده کرده‌اند را بفهمید و در محاسبات تغییر دهید.

سوال ها